Analysis of the Correlation Between Strength and Fractal Dimension of Gravelly Soil in Debris-flow Source Areas
نویسندگان
چکیده
Particle size distribution of gravelly soil plays a crucial role in debris flow initiation. For better understanding the mechanism of debris flow formation, two crucial mechanical property parameters of the gravelly soil are required to be studied meticulously: hydraulic conductivity and strength. With the aim of measuring the composition of the gravelly soil, 182 soil samples were taken from debris flow prone areas. With the aid of a sieve test, the particle size distribution of the samples can be obtained and analyzed. Then fractal theory was employed to compute the fractal dimension of the soil samples. By analyzing the results of sieve test (particle size distribution curves) and the results of the fractal theory calculations, the relationship between fractal dimension and particle size distribution can be explored. The results illustrate that the particle compositions of the gravelly soil tends to remain uniform as the fractal dimension increases. Moreover, as the coarse particle content increases, the fractal dimension decreases. To better understand the formation mechanism of debris flows, direct shear tests were conducted. Subsequently the experimental results were analyzed. By analysis, the following conclusions can be drawn: the soil strength decreases as the fractal dimension increases, and for soils with lower moisture content and identical dry density, a linear relationship between fractal dimension and cohesion force was identified. Moreover, cohesion force and internal friction force both decrease as the fractal dimension increases, but the internal friction angle decreases slightly while the cohesion force decreases greatly. Therefore we concluded that soil strength decreased mainly due to the reduction in cohesion force.
منابع مشابه
The Application of fractal dimension and morphometric properties of drainage networks in the analysis of formation sensibility in arid areas (Case Study, Yazd-Ardakan Basin)
Introduction: Many natural phenomena have many variables that make it difficult to find relationships between them using common mathematical methods. This problem, along with the impossibility of measuring all elements of nature, has led to a major evolution in the way of understanding and explaining phenomena. In this way, one can use the fractal geometry with the theory that many natural phen...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملPedotransfer functions for estimating soil moisture content using fractal parameters in Ardabil province
Extended abstract 1- Introduction Soil moisture curve is an important characteristic of soil and its measurement is necessary for determining soil available water content for plant, evapotranspiration and irrigation planning. Direct measurements of soil moisture coefficients are time-consuming and costly. But it is possible to estimate these characteristics from readily available soil propert...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملFractal dimension and earthquake frequency-magnitude distribution in the North of Central-East Iran Blocks (NCEIB)
The Gutenberg–Richter parameters (a and b), fractal dimension (DC), and relationships between these parameters are calculated for different regions of the North of Central-East Iran Blocks (NCEIB). The whole examined area (between 34°-36° N and 55°-61° E) is divided into 55 equal square grids. Both the a and b values for the frequency-magnitude distribution (FMD) and the fractal dimension (DC) ...
متن کامل